Testing

1.	Noun Plural
2.	Noun Plural
3.	Noun Plural
4.	Noun
5.	Noun Plural
6.	Noun
7.	Noun Plural
8.	Adjective
9.	Noun
10.	Verb Present Ends In Ing
11.	Noun
12.	Animal

Testing

Before the 1920s, _	Noun Plural	_ (sometimes _	Noun Plural) were h	uman clerks t	hat perform	med
Noun Plural .	They were usua	lly under the lea	ad of a	Noun Ma	any thousands	of	Joun Plural
were employed in co	ommerce, gover	nment, and	Noun e	stablishments	s. Most of the	se comput	ers were
Noun Plural	Some performe	d astronomical o	calculations f	or calendars,	others	Adjective	_ tables for
the Noun.							
After the 1920s, the	expression com	puting machine	referred to a	ny machine t	hat performed	d the work	of a humar
computer, especially	those in accord	lance with effec	tive methods	of the Churc	ch-Turing the	sis. The th	esis states
that a mathematical	method is effec	tive if it could b	e set out as a	list of instruc	ctions able to	be follow	ed by a
human clerk with pa	aper and pencil,	for as long as ne	ecessary, and	without inge	enuity or insig	ht.	
Machines that comp	outed with contin	nuous values bed	came known	as the analog	kind. They u	sed mach	inery that
represented continue	ous numeric qua	ntities, like the	angle of a sh	aft rotation o	r difference in	n electrica	l potential.
Digital machinery, i	n contrast to ana	alog, were able	to render a st	ate of a nume	eric value and	store eacl	n individual
digit. Digital machii	nery used differe	ence engines or	relays before	the invention	n of faster me	mory dev	ices.
The phrase	Present ends in ING	machine gra	dually gave	way, after the	e late 1940s, t	o just	Noun

the onset of electronic digital machinery became common. These computers were able to perform the calculations that were performed by the previous _____ clerks.

Since the values stored by digital machines were not bound to physical properties like analog devices, a logical computer, based on digital equipment, was able to do anything that could be described "purely mechanical." The theoretical Turing Machine, created by Alan Turing, is a hypothetical device theorized in order to study the properties of such hardware.

©2024 WordBlanks.com · All Rights Reserved.