RNAseq Analysis

1. Adjective
2. Verb - Base Form
3. Noun
4. Adjective
5. Noun
6. Adjective
7. Verb - Base Form
8. Noun
9. Noun
10. Noun - Plural
11. Noun
12. Adverb
13. Noun
14. Verb - Base Form
15. Verb - Present Ends In Ing
16. Noun - Plural
17. Noun
18. Adjective
19. Noun
20. Verb - Base Form
21. Noun-Plural
22. Noun
23. Verb - Base Form
24. Adjective

RNAseq Analysis

Anthony Hall already gave an \qquad introduction to RNA-seq, so I will only \qquad
a brief review. RNA-seq refers to the \qquad of using \qquad parallel
sequencing to obtain global information on an RNA component from an \qquad . This
could be poly(A) RNA (representing mRNA), total RNA, \qquad RNA, or some other
fraction. Here we \qquad on analysis of poly(A) RNA.

There are many questions that can be answered from RNA-seq data. RNA-seq data
can be used to:

Determine which \qquad of a genome are expressed

Annotate a \qquad

Find splice or alternative splice sites

Examine \qquad in expressed genes

Use de novo assembly in organisms with no \qquad to assemble a set of
cDNAs.

Find genes that are \qquad expressed between treatments, \qquad ,
timepoints, etc.

This lab will \qquad on differential expression and on polymorphism discovery.
\qquad RNA-seq data is an evolving field and there are no truly plug-and-play
\qquad . The basic steps are to:

Perform a quality control analysis of the \qquad

Filter reads to remove:
o Reads of \qquad quality
o Adapter contamination
o rRNA or other \qquad
\qquad reads to a reference genome or cDNA set.

Normalize read counts between \qquad

Fit a statistical \qquad to \qquad for genes that are significantly \qquad expressed.
©2024 WordBlanks.com All Rights Reserved.

